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Abstract

We propose a new classification of noise factors for the use in experiments with degradation data.
Based on the above classification and using a stochastic differential equation for the degradation
rate we obtain a statistical model for the degradation measurement. We then develop a two-
step optimization procedure for finding the optimal control factor setting. The methodology is
illustrated using a fluorescent lamp experiment.

1 Introduction

Designed experiments are widely used in industries for quality improvement. Surprisingly, not much work
have been done on applying the above important statistical tool for reliability improvement. Several case
studies are reported in the literature, for example, see Tseng, Hamada, and Chiao (1995) and Condra
(2001). They clearly demonstrate the importance of design of experiments for reliability improvement. A
recent review on this topic is given by Nair, Escobar, and Hamada (2003).

Two types of data are usually encountered in reliability experiments: life time data and degradation
data. In this short paper we describe our work on experiments with degradation data.

2 Degradation data

Degradation measurement is a commonly used data type in reliability analysis. It is a measurement which
is highly related to the lifetime, like the luminosity to a fluorescent light bulb (Tseng, Hamada, and Chiao
1995), the fatigue crack-size in a metal (Hudak et al., 1978). Usually, the failure of a product can be traced
to the degradation process. The degradation measurements are always monotonic and when it crosses a
certain value (the threshold) the product fails. If the degradation measurement is available, it provides more
information than the life time data.

2.1 Classification of factors

In robust parameter design, factors are classified as control and noise factors. Control factors can be easily
controlled but noise factors are either difficult or impossible to control during the normal user conditions.
Different types of noise factors are discussed in Wu and Hamada (2000, chapter 10). For the use in reliability
experiments we classify the noise factors into two: product noise and environmental noise. Product noise
factors are those factors that vary from product to product. For example, the resistance of the filament
in a light bulb will be different from unit to unit. Environmental noise factors are those factors that vary
during the usage of the product. For example, temperature and humidity around the light bulb can vary
during its usage. We make this classification because, as we will see, the variation introduced by them on the
degradation measurements have different structures. In this article, we use X to denote the control factors,
N to the product noises and Qt to the environmental noises. Note that we index the environmental noises
using the time t because they vary over time.



2.2 Modeling
Let Yt be the degradation measurement at time t. Assume that the degradation rate, may be after a suitable
transformation of the original degradation measurement, is constant, i.e. dYt/dt = constant. But this
constant depends on the control and noise factors. We assume the following model:

dYt

dt
= β(X, N) + Wt(X, N , Qt),

where β(X,N) is the rate of degradation and Wt(X, N , Qt) is the zero mean noise term. Since the degra-
dation path is a continuous path we cannot assume the noise term to be independent over time. Assume that
Wt(X,N ,Qt)dt = σ(X, N , Qt)dBt, where Bt is a standard Brownian motion. This will give continuous
sample paths for Yt. If Y0 = 0, then

Yt =
∫ t

0

β(X, N)ds +
∫ t

0

σ(X, N , Qs)dBs

It can be proved by using some properties of Ito integrals (see, for example, Øksendal, 2003 chapter 3) that

E[Yt|N ] = β(X,N)t

and
V ar[Yt|N ] = [

∫ t

0
σ(X, N , Qs)dBs|N ]

= E[(
∫ t

0
σ(X, N , Qs)dBs)2|N ]

=
∫ t

0
E(σ(X, N , Qs)2|N)ds.

Furthermore, assume that E(σ(X, N ,Qt)2|N) = σ2(X,N), then the expectation and variance of the
degradation measurement at time t are

E[Yt] = EE[Yt|N ]
= E[β(X, N)]t,

and
V ar[Yt] = EV ar[Yt|N ] + V arE[Yt|N ]

= E[σ2(X, N)]t + V ar[β(X, N)]t2

respectively.

2.3 Optimization and Estimation
Assume, after a suitable transformation, that Yt is nonnegative and increasing with t. Then Yt is a smaller-
the-better (STB) characteristic. Let τ be the threshold for the failure. Thus the product fails when yt > τ .
It is very common in the reliability literature to assume that the product imparts a loss when it fails and no
loss when it functions. But this is not a realistic assumption. The loss should increase over time because the
product performance deteriorates with time. We can use the degradation measurement as an indicator of
the product’s performance. We can define the quality loss at time t as L(Yt) = cYt, where c is a cost-related
coefficient. See Joseph (2004) for more details about this loss function.

Our objective is to find a control factor setting that will minimize the expected loss. Thus we want

min
X

E{L(Yt)} = E(cYt) = cE{β(X,N)}t,

for all t, which can be achieved by minimizing E{β(X, N)}. In other words, we want to find a control
factor setting to minimize the average degradation rate. The above procedure does not directly minimize
the variation in Yt. Is it beneficial to do that? By reducing the variation in lifetime without changing the
mean, we will be able to increase the lifetime of some products but at the same time the lifetime of some other
products will decrease. The short-lived products can seriously damage the reputation of the manufacturer.



So if we prefer increasing the lifetime of short-lived products at the expense of decreasing the lifetime of
some long-lived products, then minimizing the variation in lifetime makes sense. It is easy to show that the
variation in lifetime can be minimized by minimizing the variation in Yt.

Let X = {X1,X2}, where X1 is the set of control factors affecting the average degradation rate and
X2 the remaining control factors. Since minimizing the average degradation rate is more important than
minimizing the variation, first we will find an X∗

1 by minimizing E{β(X1, N)}. The optimal setting of the
remaining factors will then be obtained by minimizing the variation

E[σ2(X∗
1, X2,N)]t + V ar[β(X∗

1, X2,N)]t2.

This can be done uniformly over t, if X2 do not have conflicting effects on E[σ2(X∗
1, X2,N)] and

V ar[β(X∗
1, X2,N)]. But if there is a conflicting effect, we need to select a t to evaluate the variance

of Yt. We will choose this time as the average life time, which is t̄ = τ/E{β(X∗
1, N)}. Thus we have the

following two-step procedure:

1. Find X∗
1 to minimize E[β(X1, N)] and let t̄ = τ/E{β(X∗

1, N)}.
2. Find X∗

2 to minimize E[σ2(X∗
1, X2,N)]t̄ + V ar[β(X∗

1, X2, N)]t̄2.

In practice, V ar[β(X, N)], E[β(X, N)]2 and E[σ2(X, N)] are unknown and need to be estimated.
Consider a experiment with I control-factor configurations, X1, ...XI and J noise-factor combinations
N1(i), ...NJ(i) in each control-factor configuration, say i. For each factor combination, we collect obser-
vations at times (t1, ..., tK). Then the experimental outcome can be modelled as

Yijk = βijt + εijk,

for i = 1, ..., I, j = 1, ..., J , and k = 1, ..., K. Under the assumptions that for each Xi and N j(i) the Brownian
motion involved are independent from each other and E(σ(X, N , Qt)2|N) = σ2(X, N), we obtain

E[Yijk|ij] = βijt,

and
Cov[Yijk1 , Yijk2 |ij] = σ2

ijmin(tk1 , tk2),

where βij = β(Xi,N j(i)) and σ2
ij = σ2(Xi,N j(i)).

Thus, the parameters can be estimated using generalized least squares and let β̂ij and σ̂2
ij denote the

estimators. Then for each control-factor configuration, E[Yt] and V ar[Yt] can be estimated by

Ê[Yt] = β̂j.t,

̂V ar[Yt] =
t

J

J∑

j=1

σ̂2
ij +

t2

J − 1

J∑

j=1

(β̂ij − β̂j.)2,

where β̂j. = 1
J

∑J
j=1 β̂ij .

2.4 An Example
We use the fluorescent lamps experiment in Tseng, Hamada, and Chiao (1995) to illustrate our estimation and
optimization procedure. It can also be found in Wu and Hamada (2000, chapter 12). In this experiment,
three factors are studied which are A: the amount of electric current in the exhaustive process, B: the
concentration of the mercury dispenser in the mercury dispenser coating process, and C: the concentration.
They are all control factors. A 23−1 fractional factorial design with the defining relation I = ABC, is applied
and there are 5 replicates in each factor configuration, which are run 1:(-,-,-), run 2:(-,+,+), run 3:(+,-,+),
and run 4:(+,+,-).



The estimates of βij and σ2
ij are obtained as described in Section 2.3 and are given in the table below.

Then regressing with respect to the control factors, we obtain

Ê[β] = 4.2442− 1.2695B − 0.5396C,

Ê[σ2] = 1.7527− 1.2085C,

̂V ar[β] = 1.5904− 1.0613C.

Setting both factors B and C to ”high” minimizes all the above three quantities. Since there is no conflict
for the optimal setting a two-step optimization procedure is not required in the above example.

Run β̂ij(10−6) σ̂2
ij(10−6) β̂i.(10−6) S2

β̂i.

(10−13) σ̂2
i.(10−6) coef.(t)(10−6) coef.(t2)(10−11)

3.87 2.46
3.79 2.61

1 4.27 1.34 4.24 1.64 2.12 2.12 1.82
4.68 1.54
4.60 2.62
2.15 0.32
2.44 0.62

2 2.44 0.78 2.43 0.29 0.54 0.54 0.60
2.60 0.54
2.53 0.43
3.56 0.42
3.90 1.02

3 4.27 0.36 3.71 1.54 0.55 0.55 1.39
3.56 0.35
3.24 0.58
2.79 1.53
3.39 1.48

4 3.12 1.10 2.98 0.77 1.39 1.39 0.89
2.72 1.71
2.86 1.32
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